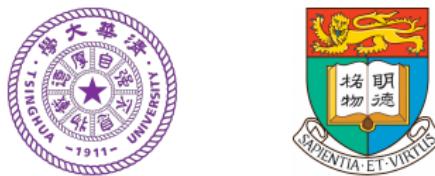


A quantum experiment with joint exogeneity violation

Yuhao Wang

Institute of Interdisciplinary Information Sciences, Tsinghua University
yuhaow@tsinghua.edu.cn

Joint work with Dr. Xingjian Zhang from University of Hong Kong



January 23, 2026

Collaborators

Based on joint work with

Xingjian Zhang
University of Hong Kong

Acknowledgement

Quantum physicist:

Xiongfeng Ma
Tsinghua University

Statistician:

Linbo Wang
University of Toronto

Howard Wiseman
Griffith University

Thomas Richardson
U. of Washington

Causal inference 101

- Randomized experiment: gold standard of causal inference;

Causal inference 101

- Randomized experiment: gold standard of causal inference;
- Assuming existence of **potential outcomes**:

Causal inference 101

- Randomized experiment: gold standard of causal inference;
- Assuming existence of **potential outcomes**: when treatment is assigned **completely at random** by the experimenter, it is common to assume exogeneity / unconfoundedness assumption:

Causal inference 101

- Randomized experiment: gold standard of causal inference;
- Assuming existence of **potential outcomes**: when treatment is assigned **completely at random** by the experimenter, it is common to assume exogeneity / unconfoundedness assumption:

Treatment assignment $Z \perp\!\!\!\perp$ potential outcomes

Causal inference 101

- Randomized experiment: gold standard of causal inference;
- Assuming existence of **potential outcomes**: when treatment is assigned **completely at random** by the experimenter, it is common to assume exogeneity / unconfoundedness assumption:

Treatment assignment $Z \perp\!\!\!\perp$ potential outcomes

Example (Types of exogeneity)

There are two types of exogeneity assumption in the literature:

Causal inference 101

- Randomized experiment: gold standard of causal inference;
- Assuming existence of **potential outcomes**: when treatment is assigned **completely at random** by the experimenter, it is common to assume exogeneity / unconfoundedness assumption:

Treatment assignment $Z \perp\!\!\!\perp$ potential outcomes

Example (Types of exogeneity)

There are two types of exogeneity assumption in the literature:

- **marginal exogeneity**: $Y(z) \perp\!\!\!\perp Z$ for $z \in \{0, 1\}$;
- **joint exogeneity**: $(Y(1), Y(0)) \perp\!\!\!\perp Z$.

Comparison between two assumptions

- **Mathematically** – joint exogeneity is stronger than marginal exogeneity \Rightarrow

Comparison between two assumptions

- **Mathematically** – joint exogeneity is stronger than marginal exogeneity \Rightarrow
 - An assumption on cross world distribution $\mathbb{P}(Z, Y(1), Y(0))$

Comparison between two assumptions

- **Mathematically** – joint exogeneity is stronger than marginal exogeneity \Rightarrow
 - An assumption on cross world distribution $\mathbb{P}(Z, Y(1), Y(0))$
 \rightsquigarrow **unverifiable** even by a hypothetical experiment.

Comparison between two assumptions

- **Mathematically** – joint exogeneity is stronger than marginal exogeneity \Rightarrow
 - An assumption on cross world distribution $\mathbb{P}(Z, Y(1), Y(0))$
 \rightsquigarrow **unverifiable** even by a hypothetical experiment.
- **In reality** – to our knowledge there is still no example where joint exogeneity is **violated** in randomized experiment.

Comparison between two assumptions

- **Mathematically** – joint exogeneity is stronger than marginal exogeneity \Rightarrow
 - An assumption on cross world distribution $\mathbb{P}(Z, Y(1), Y(0))$
 \rightsquigarrow **unverifiable** even by a hypothetical experiment.
- **In reality** – to our knowledge there is still no example where joint exogeneity is **violated** in randomized experiment.

Talk overview

- We provide an example where assuming **joint exogeneity** of a fully randomized assignment results in a **contradiction** with other basic principles of causal models;

Comparison between two assumptions

- **Mathematically** – joint exogeneity is stronger than marginal exogeneity \Rightarrow
 - An assumption on cross world distribution $\mathbb{P}(Z, Y(1), Y(0))$
 \rightsquigarrow **unverifiable** even by a hypothetical experiment.
- **In reality** – to our knowledge there is still no example where joint exogeneity is **violated** in randomized experiment.

Talk overview

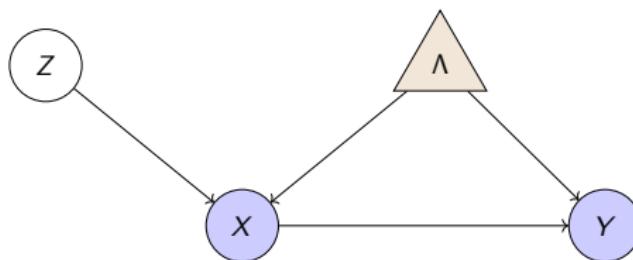
- We provide an example where assuming **joint exogeneity** of a fully randomized assignment results in a **contradiction** with other basic principles of causal models;
- We further discuss philosophical insights / open questions from this violation.

Experiment: a randomized experiment with noncompliance



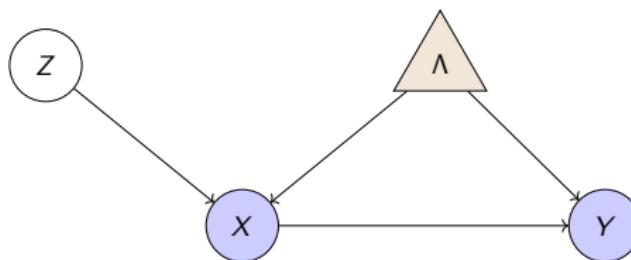
- Z : fully rand. treat. assign. – $Z \in \{1, 2, 3\}$;

Experiment: a randomized experiment with noncompliance



- Z : fully rand. treat. assign. – $Z \in \{1, 2, 3\}$;
- Λ : a quantum source sending two entangled photons to two receivers X and Y , respectively;

Experiment: a randomized experiment with noncompliance



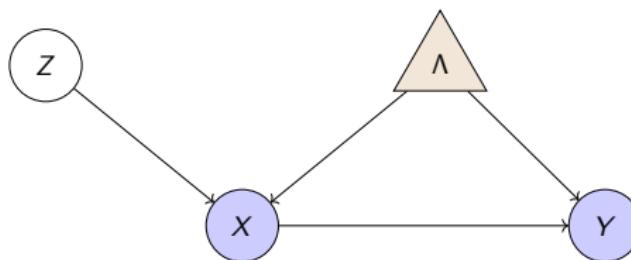
- Z : fully rand. treat. assign. – $Z \in \{1, 2, 3\}$;
- Λ : a quantum source sending two entangled photons to two receivers X and Y , respectively;
- X, Y : measuring the photons & producing an output in $\{0, 1\} \Rightarrow$

Experiment: a randomized experiment with noncompliance



- Z : fully rand. treat. assign. – $Z \in \{1, 2, 3\}$;
- Λ : a quantum source sending two entangled photons to two receivers X and Y , respectively;
- X, Y : measuring the photons & producing an output in $\{0, 1\} \Rightarrow$
 - the way X & Y measure the photon depends on the realizations of Z & X , respectively.

Experiment: a randomized experiment with noncompliance



- Z : fully rand. treat. assign. – $Z \in \{1, 2, 3\}$;
- Λ : a quantum source sending two entangled photons to two receivers X and Y , respectively;
- X, Y : measuring the photons & producing an output in $\{0, 1\} \Rightarrow$
 - the way X & Y measure the photon depends on the realizations of Z & X , respectively.
⇒ **Ex:** adjusting the angle of **polarizer** based on the outputs.

Theorem

Suppose we are under two assumptions:

- ① **existence of P.O.s:** $Y(x, z)$ for $x \in \{0, 1\}, z \in \{1, 2, 3\}$ exist;

Theoretical results

Theorem

Suppose we are under two assumptions:

- ① *existence of P.O.s*: $Y(x, z)$ for $x \in \{0, 1\}, z \in \{1, 2, 3\}$ exist;
- ② *joint exogeneity*: $Z \perp\!\!\!\perp (Y(0, 1), \dots, Y(1, 3))$.

Theoretical results

Theorem

Suppose we are under two assumptions:

- ① **existence of P.O.s:** $Y(x, z)$ for $x \in \{0, 1\}, z \in \{1, 2, 3\}$ exist;
- ② **joint exogeneity:** $Z \perp\!\!\!\perp (Y(0, 1), \dots, Y(1, 3))$.

Then $\mathcal{I}_Q := -\langle Y \rangle_1 + 2\langle Y \rangle_2 + \langle X \rangle_1 - \langle XY \rangle_1 + 2\langle XY \rangle_3 \leq 3$, where

$$\langle XY \rangle_z := \sum_{x,y=0,1} (-1)^{x+y} \mathbb{P}(X = x, Y = y \mid Z = z).$$

Theoretical results

Theorem

Suppose we are under two assumptions:

- ① *existence of P.O.s*: $Y(x, z)$ for $x \in \{0, 1\}, z \in \{1, 2, 3\}$ exist;
- ② *joint exogeneity*: $Z \perp\!\!\!\perp (Y(0, 1), \dots, Y(1, 3))$.

Then $\mathcal{I}_Q := -\langle Y \rangle_1 + 2\langle Y \rangle_2 + \langle X \rangle_1 - \langle XY \rangle_1 + 2\langle XY \rangle_3 \leq 3$, where

$$\langle XY \rangle_z := \sum_{x,y=0,1} (-1)^{x+y} \mathbb{P}(X = x, Y = y \mid Z = z).$$

This results in a **contradiction**:

- Chaves et al. (Nat. Phy. '18): there exists a quantum system constructed **according to** the IV graph s.t. $\mathcal{I}_Q > 3$.
 \Rightarrow It can be $\mathcal{I}_Q = 1 + 2\sqrt{2}$.

Question

How do we understand “potential outcomes exist”?

Question

How do we understand “potential outcomes exist”?

- The **exact definition** of P.O.E. may vary (slightly) from paper to paper:
 - ⇒ There is no consensus in causal inference community.

Question

How do we understand “potential outcomes exist”?

- The **exact definition** of P.O.E. may vary (slightly) from paper to paper:
 ⇒ There is no consensus in causal inference community.
- However, at least **a large number** of causal inference researchers would agree it has at least the following two **requirements**:

Question

How do we understand “potential outcomes exist”?

- The **exact definition** of P.O.E. may vary (slightly) from paper to paper:
 - ⇒ There is no consensus in causal inference community.
- However, at least **a large number** of causal inference researchers would agree it has at least the following two **requirements**:
 - Consistency

Question

How do we understand “potential outcomes exist”?

- The **exact definition** of P.O.E. may vary (slightly) from paper to paper:
 ⇒ There is no consensus in causal inference community.
- However, at least **a large number** of causal inference researchers would agree it has at least the following two **requirements**:
 - Consistency
 - Intervention representability.

Minimal requirements of P.O. existence

- Consistency: $Y = \sum_{z \in \{1,2,3\}} \sum_{x \in \{0,1\}} \mathbb{1}\{\textcolor{blue}{X} = x, \textcolor{blue}{Z} = z\} Y(x, z);$

Minimal requirements of P.O. existence

- Consistency: $Y = \sum_{z \in \{1,2,3\}} \sum_{x \in \{0,1\}} \mathbb{1}\{\textcolor{blue}{X} = x, \textcolor{blue}{Z} = z\} Y(x, z);$
- Intervention representability: we can use potential outcomes to represent ATE,

Minimal requirements of P.O. existence

- Consistency: $Y = \sum_{z \in \{1,2,3\}} \sum_{x \in \{0,1\}} \mathbb{1}\{\textcolor{blue}{X} = x, \textcolor{blue}{Z} = z\} Y(x, z);$
- Intervention representability: we can use potential outcomes to **represent** ATE, **and also** ATT / ATC like quantities:

Minimal requirements of P.O. existence

- Consistency: $Y = \sum_{z \in \{1,2,3\}} \sum_{x \in \{0,1\}} \mathbb{1}\{\textcolor{blue}{X} = x, \textcolor{blue}{Z} = z\} Y(x, z)$;
- Intervention representability: we can use potential outcomes to represent ATE, and also ATT / ATC like quantities:
 - ~~~ $\mathbb{P}(Y(\textcolor{blue}{x}, \textcolor{blue}{z}) = y \mid \textcolor{red}{X} = x', \textcolor{red}{Z} = z')$ can represent the interventional dist. of Y if we intervene on Y by setting (X, Z) to $(\textcolor{blue}{x}, \textcolor{blue}{z})$,

Minimal requirements of P.O. existence

- Consistency: $Y = \sum_{z \in \{1,2,3\}} \sum_{x \in \{0,1\}} \mathbb{1}\{\textcolor{blue}{X} = x, \textcolor{blue}{Z} = z\} Y(x, z)$;
- Intervention representability: we can use potential outcomes to represent ATE, and also ATT / ATC like quantities:
 - ~~~ $\mathbb{P}(Y(\textcolor{blue}{x}, \textcolor{blue}{z}) = y \mid \textcolor{red}{X} = x', \textcolor{red}{Z} = z')$ can represent the interventional dist. of Y if we intervene on Y by setting (X, Z) to $(\textcolor{blue}{x}, \textcolor{blue}{z})$, within the subgroup receiving treat. assign. $(\textcolor{red}{X} = x', \textcolor{red}{Z} = z')$

Minimal requirements of P.O. existence

- Consistency: $Y = \sum_{z \in \{1,2,3\}} \sum_{x \in \{0,1\}} \mathbb{1}\{\textcolor{blue}{X} = x, \textcolor{blue}{Z} = z\} Y(x, z)$;
- Intervention representability: we can use potential outcomes to represent ATE, and also ATT / ATC like quantities:
 - ~ $\mathbb{P}(Y(\textcolor{blue}{x}, \textcolor{blue}{z}) = y \mid \textcolor{red}{X} = x', \textcolor{red}{Z} = z')$ can represent the interventional dist. of Y if we intervene on Y by setting (X, Z) to $(\textcolor{blue}{x}, \textcolor{blue}{z})$, within the subgroup receiving treat. assign. $(\textcolor{red}{X} = x', \textcolor{red}{Z} = z')$

Follows from exactly the same logic as def. of ATT / ATC:

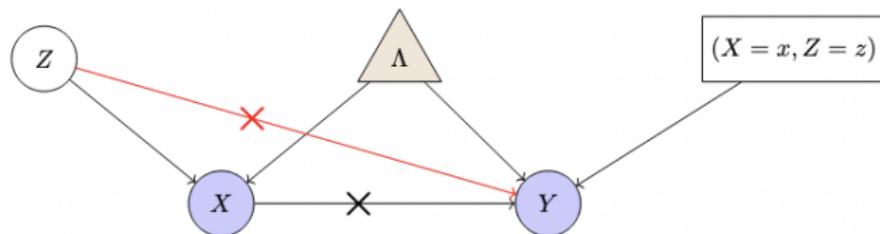
- $\mathbb{E}[Y(1) \mid T = 1] - \mathbb{E}[Y(0) \mid T = 1]$;
- or more generally: $\mathbb{E}[Y(\textcolor{blue}{t}) \mid \textcolor{red}{T} = \textcolor{red}{t}']$.

ATT / ATC definition

Following **same logic** as ATT's def., $\mathbb{P}(Y(x, z) = y | X, Z)$

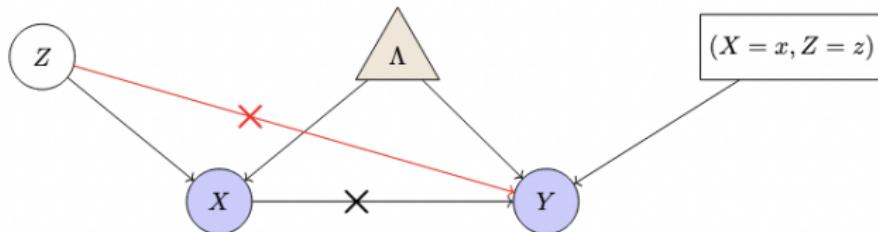
ATT / ATC definition

Following **same logic** as ATT's def., $\mathbb{P}(Y(x, z) = y | X, Z)$ = cond. dist. of Y given X & Z when (Z, X, Y) are generated from the following exp.:



ATT / ATC definition

Following **same logic** as ATT's def., $\mathbb{P}(Y(x, z) = y | X, Z) = \text{cond. dist. of } Y \text{ given } X \& Z$ when (Z, X, Y) are generated from the following exp.:



$$\mathbb{P}(Y(x, z) = y, X = x' | Z = z') = \text{tr}[(M_{x'}^{z'} \otimes N_y^x)\rho]$$

- $M_x^z, N_y^x \in \mathbb{H}^{2 \times 2}$: specification of how the photons sent to $X \& Y$ are **measured**;
- $\rho \in \mathbb{H}^{4 \times 4}$: **state** of two entangled photons.

ATT / ATC definition

Following **same logic** as ATT's def., $\mathbb{P}(Y(x, z) = y | X, Z) = \text{cond. dist. of } Y \text{ given } X \& Z$ when (Z, X, Y) are generated from the following exp.:



$$\mathbb{P}(Y(x, z) = y, X = x' | Z = z') = \text{tr}[(M_{x'}^{z'} \otimes N_y^x) \rho]$$

- $M_x^z, N_y^x \in \mathbb{H}^{2 \times 2}$: specification of how the photons sent to $X \& Y$ are **measured**;
- $\rho \in \mathbb{H}^{4 \times 4}$: **state** of two entangled photons.

$$\mathbb{P}(Y(x, z_1) = y | X = x', Z = z') = \mathbb{P}(Y(x, z_2) = y | X = x', Z = z') \quad (\text{stratified exclusion restriction}).$$

Proof

Problem transferred to: giving an upper bound of \mathcal{I}_Q under **stratified exclusion restriction** & **joint** exogeneity;

Proof

Problem transferred to: giving an upper bound of \mathcal{I}_Q under **stratified exclusion restriction** & **joint** exogeneity;

Proved that $\mathcal{I}_Q \leq 3$.

Assumption summary

Assumption 1

There exists random variables $Y(0, 1), \dots, Y(1, 3)$ with

- (i) Consistency;
- (ii) Intervention representability.

Assumption 2

Joint exogeneity

$$Z \perp\!\!\!\perp (Y(0, 1), \dots, Y(1, 3)).$$

Assumption summary

Assumption 1

There exists random variables $Y(0, 1), \dots, Y(1, 3)$ with

- (i) Consistency;
- (ii) Intervention representability.

Assumption 2

Joint exogeneity

$$Z \perp\!\!\!\perp (Y(0, 1), \dots, Y(1, 3)).$$

Consistency seems to be a fundamental assumption, so more likely:

joint exogeneity & intervention representability

cannot co-exist.

Assumption summary

- “Intervention representability” seems more fundamental than J.E.
⇒ constitutes the definition of P.O.s

Assumption summary

- “Intervention representability” seems more fundamental than J.E.
 ⇒ constitutes the definition of P.O.s
- So it's **more likely** that J.E. is violated.

Discussions & Open questions

Conditional interventional distribution

The contradiction motivates me to take a further investigation into \Rightarrow

$$\mathbb{P}(Y(x, z) = y \mid X = x', Z = z')$$

Conditional interventional distribution

The contradiction motivates me to take a further investigation into \Rightarrow

$$\mathbb{P}(Y(x, z) = y \mid X = x', Z = z') \equiv \mathbb{P}(Y(x, z) = y \mid \textcolor{red}{X(z') = x'}, Z = z')$$

Conditional interventional distribution

The contradiction motivates me to take a further investigation into \Rightarrow

$$\mathbb{P}(Y(x, z) = y \mid X = x', Z = z') \equiv \mathbb{P}(Y(x, z) = y \mid \textcolor{red}{X(z') = x'}, Z = z')$$

\Rightarrow a **counterfactual distribution**;

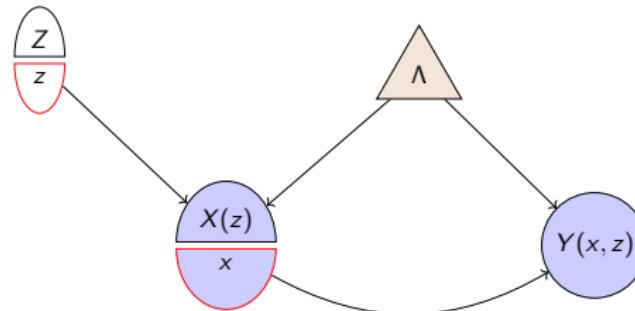
Conditional interventional distribution

The contradiction motivates me to take a further investigation into \Rightarrow

$$\mathbb{P}(Y(x, z) = y | X = x', Z = z') \equiv \mathbb{P}(Y(x, z) = y | X(z') = x', Z = z')$$

\Rightarrow a **counterfactual distribution**;

- Not a “legal distribution” allowed by SWIG framework:



\Rightarrow we can only define $\mathbb{P}(Y(x, z) = y | X = x', Z = z')$

Open question

When a causal structure exists within T ,
 $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?
- **If so,**

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?
- **If so**, how to understand the fact that: in order to satisfy “intervention representability”,

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?
- **If so**, how to understand the fact that: in order to satisfy “intervention representability”, we **must** provide a definition to a **counterfactual query** $\mathbb{E}[Y(t) | T = t']$?

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?
- **If so**, how to understand the fact that: in order to satisfy “intervention representability”, we **must** provide a definition to a **counterfactual query** $\mathbb{E}[Y(t) | T = t']$?
 ⇒ against common sense: P.O.E. involves no counterfactuals.

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?
- **If so**, how to understand the fact that: in order to satisfy “intervention representability”, we **must** provide a definition to a **counterfactual query** $\mathbb{E}[Y(t) | T = t']$?
 ⇒ against common sense: P.O.E. involves no counterfactuals.
- **If not**,

Open question

When a causal structure exists within T , $\mathbb{E}[Y(t) | T = t']$ can be a counterfactual query.

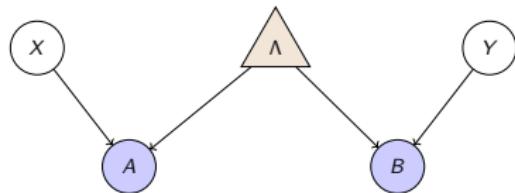
Based on this observation, I have the following questions:

- Is “intervention representability” **necessary** for variables $\{Y(t)\}_{t \in T}$ to be considered as P.O.s?
- If so, how to understand the fact that: in order to satisfy “intervention representability”, we **must** provide a definition to a **counterfactual query** $\mathbb{E}[Y(t) | T = t']$?
 ⇒ against common sense: P.O.E. involves no counterfactuals.
- If not, does that mean P.O.s **cannot** model all ATT/ATC like queries?

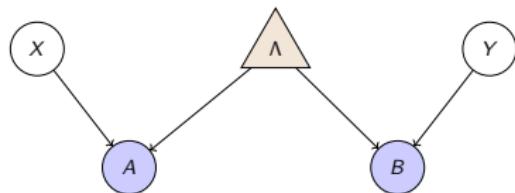
Connections to Bell experiments

Showed the following three physical principles cannot coexist:

- Realism, freedom & locality;



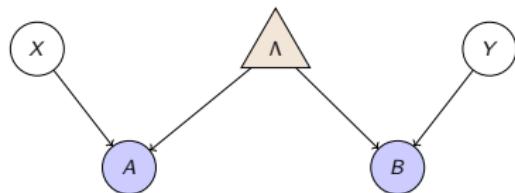
Connections to Bell experiments



Showed the following three physical principles cannot coexist:

- Realism, freedom & locality;
- Assuming **any two** is still fine;

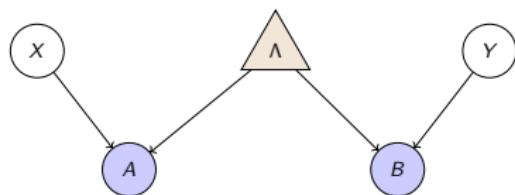
Connections to Bell experiments



Showed the following three physical principles cannot coexist:

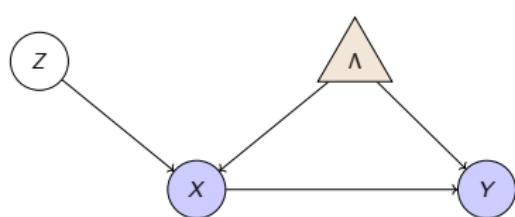
- Realism, freedom & locality;
- Assuming **any two** is still fine;
- Robins et al. (15), Gill (14): provided a P.O. definition of three principles.

Connections to Bell experiments



Showed the following three physical principles cannot coexist:

- Realism, freedom & locality;
- Assuming **any two** is still fine;
- Robins et al. (15), Gill (14): provided a P.O. definition of three principles.

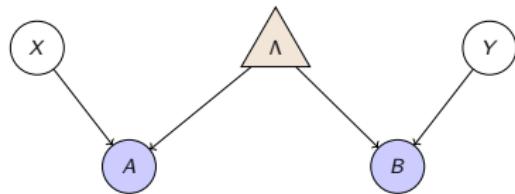


Based on definitions from Robins et al. (15),
Gill (14):

Connections to Bell experiments

Showed the following three physical principles cannot coexist:

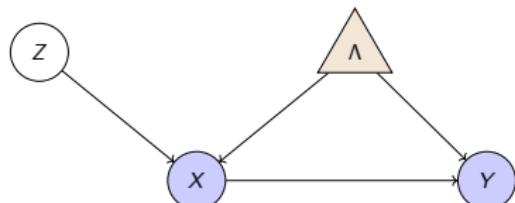
- Realism, freedom & locality;
- Assuming **any two** is still fine;
- Robins et al. (15), Gill (14): provided a P.O. definition of three principles.



Based on definitions from Robins et al. (15),
Gill (14):

- “locality” seems **not** assumed in our problem:

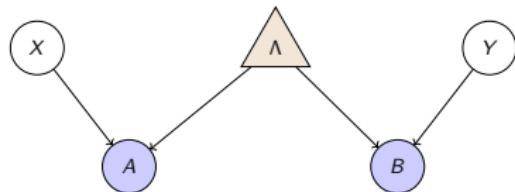
$$\mathbb{P}(Y(x, z_1) \neq Y(x, z_2)) > 0$$



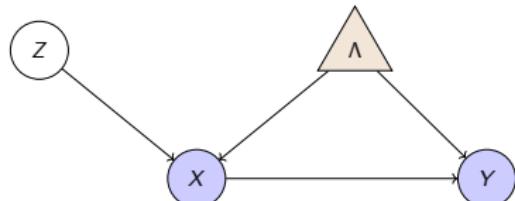
Connections to Bell experiments

Showed the following three physical principles cannot coexist:

- Realism, freedom & locality;
- Assuming **any two** is still fine;
- Robins et al. (15), Gill (14): provided a P.O. definition of three principles.



Based on definitions from Robins et al. (15), Gill (14):



- “locality” seems **not** assumed in our problem:

$$\mathbb{P}(Y(x, z_1) \neq Y(x, z_2)) > 0$$

- **Q:** since we don't assume “locality”, why contradiction still exists?

Discussion with quantum physcists / quantum logician

Discussion with quantum physcists / quantum logician

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;

Discussion with quantum physcists / quantum logician

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;

~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics**

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;

~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics** and found “intervention representability” is violated using this definition.

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;
~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics** and found “intervention representability” is violated using this definition.

Open question:

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;
~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics** and found “intervention representability” is violated using this definition.

Open question:

- ① How to rigorously justify this conjecture?

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;
~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics** and found “intervention representability” is violated using this definition.

Open question:

- ① How to rigorously justify this conjecture?
- ② If this is true and we believe “intervention representability” is still **necessary** for P.O.E.,

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;
~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics** and found “intervention representability” is violated using this definition.

Open question:

- ① How to rigorously justify this conjecture?
- ② If this is true and we believe “intervention representability” is still **necessary** for P.O.E., does it mean in order to properly define P.O.s, we implicitly assume locality?

Howard Wiseman's conjecture: “intervention representability” implicitly assumes certain kind of “locality”;

~~> Proposed a definition of $Y(x, z)$ using **Bohmian mechanics** and found “intervention representability” is violated using this definition.

Open question:

- ① How to rigorously justify this conjecture?
- ② If this is true and we believe “intervention representability” is still **necessary** for P.O.E., does it mean in order to properly define P.O.s, we implicitly assume locality?

~~> Different from Robins et al. (15), Gill (14): locality is not required if we just want to define P.O.s.

Thank you for your attention!

Previous version (may be substantially revised based on feedbacks from open questions):

Wang, Y., & Zhang, X. (2025). *“A quantum experiment with joint exogeneity violation.”* arXiv:2507.22747